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An Enhanced Method for Determining
Electromagnetic Properties

of Periodic Materials
Frederic Lubrano and Frederic Oelhoffen

Abstract—A three-dimensional finite-element method with
efficient boundary conditions is presented to simulate the elec-
tromagnetic properties of heterogeneous periodic materials. The
analysis based on a waveguide approach applies to arbitrary
profiles with any kind of inclusions for all incidence condition.
The Floquet’s theorem is used to take into account the periodicity
of the problem. This method allows one to handle the scattering
effects in the material. For periodically organized composite ma-
terials, we can extract an effective permeability and permittivity
under certain hypotheses.

Index Terms—Finite-element method (FEM), nonhomogeneous
media, periodic structures, permeability, permittivity.

I. INTRODUCTION

QUASI-STATIC methods are often used to compute the
effective permittivity or permeability of periodic (deter-
ministic) heterostructures [1]–[3]. These techniques are

restricted to the long-wavelength limit. When the wavelength is
shorter than approximately ten periods of the lattice, the homog-
enization must be performed without assumption in Maxwell’s
equations.

We report here on a rigorous method capable of computing
the complex reflection and transmission coefficients for any pe-
riodic composite material of known inclusion characteristics
and thickness. The related effective values of permittivity and
permeability can then be derived directly as it would be pro-
cessed from a reflection transmission measurement [4].

A number of techniques have already been applied to analyze
the propagation and scattering properties in three-dimensional
(3-D) doubly periodic structures. For example, the “coupled-
waves” method [5], a finite-difference approach based on a
spectral analysis, reduces the 3-D problem to a single variable.

In fact, for highly inhomogeneous media, which can com-
bine magnetic, dielectric, and metallic parts, it is convenient
to use a finite-element method (FEM) formulation. The hetero-
geneity and anisotropy are solved implicitly and rigorously. As
part of this approach, the hybrid finite-element/boundary inte-
gral methods have been developed to simulate a wide class of
complex periodic geometries [6]. This analysis involves the con-
struction of periodic Green’s functions.

We propose here a waveguide-oriented technique that takes
into account the quasi-periodicity of the fields in the whole
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Fig. 1. Schematic representation of a typical case. Tx; Ty stand for the
periods of the infinite structure.

space. Our FEM methodology makes use of the 3-D mixed finite
elements [7]. Solving the periodic problem requires the defini-
tion of new boundary conditions (BCs) on the electromagnetic
field: the quasi-periodic BC. For subwavelength periods, only
the fundamental mode propagates. The reflection and transmis-
sion coefficients computed by the software are introduced in the
Weir–Nicholson formula [4] to give the permeability and per-
mittivity of the effective medium. The basic hypothesis of this
method is the knowledge of the electromagnetic properties of
each inclusion.

II. BOUNDARY-VALUE PROBLEM

An infinite doubly periodic structure is illuminated by a
plane wave (Fig. 1). Assuming an time dependence,
we denote as the incident wave vector. The
space is separated in three areas: , are the homogeneous
domains and is a domain of thickness , which includes all
the anisotropic inhomogeneities.

The periodicity forces the reflected and transmitted energy
to propagate along certain directions. These propagation modes
are defined analytically in and by the following.

• with .
• Outgoing waves conditions at .
• The quasi-periodicity of the fields (periodicity with the

phase shift of the oblique incidence wave):

(1)

(2)
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Fig. 2. Finite-element domain: periodic cell.

The scattered field can be expanded on Floquet’s modes as

(3)

(4)

and their related wave vectors are determined by

(5)

(6)

are the diffraction coefficients, i.e., the unknowns of our
problem. It is worth noting that, for a lossless medium and
when , the ( ) Floquet’s mode propagates
( is real). Otherwise is purely imaginary and one gets
an evanescent wave along .

Inside the inhomogeneous area , the fields satisfy the
Bloch conditions (1) and (2). Let us note (respectively,

) the intersection of (respectively, ) with the
periodic domain . strictly includes all
the inhomogeneities. From a numerical point-of-view, we
can consider the unit cell as a rectangular pseudoguide
(Fig. 2) whose sides represent the quasi-periodic conditions for
the fields. The input and output modes are Floquet’s waves.
Thus, we use a waveguide-oriented finite-element approach to
handle the periodic problem. Our analysis starts from an FEM
technique [8] whose accuracy has been proven for classical
waveguide studies.

Let , , , be
the periodic boundaries of the FEM domain , and let

be its upper and lower face. The solution of
our problem is entirely determined by solving the equations of
propagation in

(7)

may be tensorial (8)

with the quasi-periodic BC on tangential components

(9)

(10)

and the continuity of total magnetic and electric fields on
and . On these last boundaries, we apply a modal-coupling
method, which means we are expanding the fields on Flo-
quet’s modes and enforcing the continuity of their tangential
components.

III. MIXED FINITE-ELEMENT APPROACH

Our FEM software [9] is based on the variational
formulation. is the Sobolev space of summable
square vector functions in a bounded regular domain and
whose curl square can also be integrated. We use the
finite-element conforming in built on tetrahedron, as
introduced by Nedelec [7]. The degrees of freedom are on
the edges (i.e., the computed unknown is the line integral of
the vector solution along the tetrahedron edge).

The harmonic Maxwell problem is solved in where the
propagation equation (7) is discretized by nondivergence poly-
nomial basis functions. A weak formulation of (7) leads to the
following problem: find in so that, for all , we
have

(11)

with being the boundary of and being its outgoing unit
normal vector.

In this FEM, is approximated by a finite -di-
mensional vectorial space of so that we can write an
approximation for

(12)

where the first-order polynomial basis functions have the
“mixed-FEM” properties

(13)

with being the tetrahedron edge and being the Kronecker
delta. is the line integral of along . The discretized form
of (11) then becomes

with

(14)

being the surface term of (11) coming from the sources
or Neumann BC or, more generally, from conditions linking
the value of the solution to its curl (impedance BC, absorbing
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BC, etc.). The factorization of the sparse matrix
is performed using a Crout algorithm [10].

IV. MODAL-COUPLING METHOD

This technique handles the matching of Floquet’s modes on
the upper and lower boundary and of the domain . In
order to be a solution of Maxwell’s equations in the whole space,
tangential components of total magnetic and electric fields must
be continuous at these artificial boundaries. We expand the Flo-
quet’s modes (3) and (4) on the TE–TM basis where TE and
TM is referred, respectively, to the electric- and magnetic-field
component normal to the plane of diffraction ( ; ). The tan-
gential components of the electric field on and can be
expressed as

(15)

with the convention ( ), and being the
projection TE ( ) or TM ( ). The scalar quantities

represent the diffraction coefficients in the TE-TM basis.
They are the unknowns of our problem. are the incident
data: zero on the lower boundary (no incident wave) and
nonzero on only for (incident wave). On these
surfaces, the TE–TM basis has the form

(16)

(17)

with .
The Floquet’s modes are characterized by the relation

(18)

with for TE modes and for TM
modes. Therefore, we can write the continuity of tangential
components of the total magnetic field on and as

(19)

with

(20)

Finally, we express the solution of the periodic problem in
as

(21)

where the fields (respectively, ) are computed in
by solving, for each mode considered on the boundary
(respectively, ), the FEM equation

(22)

with the modal BC on and

(23)

(24)

and the quasi-periodic BC on , , , and

(25)

(26)

The modal BCs are the standard Neumann BCs. The non-
trivial quasi-periodic BC will be introduced in Section V.

The sum (21) converges to the solution of the problem that we
have formulated in Section II. We obtain directly the magnetic
field in the cell by applying the curl on (21).

The sum is, in fact, truncated by choosing a finite number
of Floquet’s modes (all the propagating ones and the first

vanishing ones). We built the linear system using
the continuity on the tangential components of the electric field
with (15), (20), and (21). This condition enables us to compute
the coefficients of the scattered field expansion, as well as re-
flection and transmission coefficients.

This method is numerically efficient. It is valid for all fre-
quencies, provided is chosen large enough.

V. QUASI-PERIODIC BCs

We are looking for quasi-periodic solutions [see (9) and
(10)]. The FEM basis functions (13) should be modified in
order that they belong to the solution space (i.e., they must
be quasi-periodic). Only basis functions supported on quasi-
periodic boundaries will be concerned.

This method requires that the mesh trace is the same on
facing boundaries of the cell. Let us note is
the family of basis functions related to the boundary,

are those corresponding to the facing
boundary, and are all the other ones (the
methodology is the same for and boundaries). If the
mesh is periodic then

(27)

From (9) and (12), we must have

(28)

Hence, we built a new set of basis functions

for

for
(29)

This new set gives the same properties (13).
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Fig. 3. Honeycomb grid: insulator of permittivity � = 3� with the vertical
faces coated with silver paint of impedance 10 
/sq, surrounded by air. The
dimensions are T = T =

p
3, a = T =3 (hexagonal edge), e = 0:01T

(insulator gap), and h = 0:5T (height).

Fig. 4. Computed and measured transmission coefficient (modulus) of the
silver honeycomb grid studied. The frequency is normalized to the spatial
frequency f given by the largest period T : f = c=T (diffraction threshold).
The incidence is normal (EEE ==ŷyy).

Integral (11) is a Hermitian scalar product. The surface term
vanishes with the basis. and matrices become Her-
mitian. The new formulation

(30)

enforces the computed electromagnetic field to be quasi-
periodic. This method is very easy to handle and leads to a
well-formulated FEM for quasi-periodic BCs.

VI. HOMOGENIZATION OF PERIODIC MATERIALS

We are interested in simulation of periodically organized
composite materials. When the periods are small enough
compared to the wavelength (i.e., when the scattering can
be neglected), the electromagnetic properties of the material
can be characterized by an effective permeability and
permittivity . These values are directly obtained from the
computed reflection and transmission coefficients [4] that are
the measurable quantities. To ensure the homogenization,
and must satisfy a nondependence with the thickness.

The accuracy of the computation of the reflection and
transmission coefficients has been proven for several types
of frequency-selective surfaces [11]. For a silver honeycomb
grid (Fig. 3), we show our results relative to measurements
(Fig. 4). The transmission coefficient spectrum is presented

Fig. 5. Effective relative permittivity. ~� = (~� � i~� ).

Fig. 6. Effective relative permeability. ~� = (~� � i~� ).

for normal incidence. Measurements have been performed on
lens-focusing facility [12].

The effective permittivity extracted from the complex trans-
mission and reflection coefficients shows a resonant feature
(Fig. 5) usually observed for frequency-selective surfaces.
Although the material has no magnetic part, the effective
permeability (Fig. 6) varies substantially. is decreasing,
while becomes resonant. keeps its modulus lower than
one. This behavior is related to the skin effect [13]. It is shown
that composite materials made of hollow conducting inclusions
may exhibit permeability levels significantly different from
unity, even for nonmagnetic metal volume fractions lower than
1% [14].

VII. CONCLUSION

The propagation and diffraction characteristics of any peri-
odic heterostructure can be described rigorously by the present
FEM. The scalar coefficients of Floquet’s modes and the elec-
tromagnetic field in the FEM domain are computed with good
accuracy when we consider the first vanishing modes in the cal-
culations. The effective permittivity and permeability of com-
posite materials are then directly derived from the reflection and
transmission coefficients.

This method is quite appropriate for the study and design of
organized composite dielectrics. Besides, the limit of the ho-
mogenization hypothesis can be determined using this software,
which is valid for the scattering regime.
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