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An Enhanced Method for Determining
Electromagnetic Properties
of Periodic Materials

Frederic Lubrano and Frederic Oelhoffen

Abstract—A three-dimensional finite-element method with
efficient boundary conditions is presented to simulate the elec-
tromagnetic properties of heterogeneous periodic materials. The
analysis based on a waveguide approach applies to arbitrary
profiles with any kind of inclusions for all incidence condition.
The Floquet’stheorem is used to take into account the periodicity
of the problem. This method allows one to handle the scattering
effects in the material. For periodically organized composite ma-
terials, we can extract an effective permeability and permittivity
under certain hypotheses.

Index Terms—Finite-element method (FEM), nonhomogeneous
media, periodic structures, per meability, permittivity.

|. INTRODUCTION

UASI-STATIC methods are often used to compute the
Q effective permittivity or permeability of periodic (deter-

ministic) heterostructures [1]-3]. These techniques are
restricted to the long-wavel ength limit. When the wavelength is
shorter than approximately ten periods of thelattice, the homog-
enization must be performed without assumption in Maxwell’s
equations.

We report here on a rigorous method capable of computing
the complex reflection and transmission coefficients for any pe-
riodic composite material of known inclusion characteristics
and thickness. The related effective values of permittivity and
permeability can then be derived directly as it would be pro-
cessed from areflection transmission measurement [4].

A number of techniques have already been applied to analyze
the propagation and scattering properties in three-dimensional
(3-D) doubly periodic structures. For example, the “coupled-
waves’ method [5], a finite-difference approach based on a
spectral analysis, reduces the 3-D problem to a single variable.

In fact, for highly inhomogeneous media, which can com-
bine magnetic, dielectric, and metalic parts, it is convenient
to use afinite-element method (FEM) formulation. The hetero-
geneity and anisotropy are solved implicitly and rigorously. As
part of this approach, the hybrid finite-element/boundary inte-
gral methods have been developed to simulate a wide class of
complex periodic geometries[6]. Thisanalysisinvolvesthe con-
struction of periodic Green's functions.

We propose here a waveguide-oriented technique that takes
into account the quasi-periodicity of the fields in the whole
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Fig. 1. Schematic representation of a typica case. Tx, Ty stand for the
periods of the infinite structure.

space. Our FEM methodol ogy makes use of the 3-D mixedfinite
elements [7]. Solving the periodic problem requires the defini-
tion of new boundary conditions (BCs) on the el ectromagnetic
field: the quasi-periodic BC. For subwavelength periods, only
the fundamental mode propagates. The reflection and transmis-
sion coefficients computed by the software are introduced in the
Weir—Nicholson formula [4] to give the permeability and per-
mittivity of the effective medium. The basic hypothesis of this
method is the knowledge of the electromagnetic properties of
each inclusion.

Il. BOUNDARY-VALUE PROBLEM

An infinite doubly periodic structure is illuminated by a
plane wave (Fig. 1). Assuming an exp(iwt) time dependence,
we denote k(k, ky, k.) as the incident wave vector. The
space is separated in three areas: ©1, O, are the homogeneous
domains and ©;, is adomain of thickness %, which includes all
the anisotropic inhomogeneities.

The periodicity forces the reflected and transmitted energy
to propagate along certain directions. These propagation modes
are defined analytically in ©; and ©, by the following.

d AET’t + k1722E7”t = 0 with /{}172 = (6172 u172)1/2w.

 QOutgoing waves conditions at z = +oc.

» The quasi-periodicity of the fields (periodicity with the
phase shift of the oblique incidence wave):

Ex+T,, y+ Ty 2) :e_i(kwTw"'kyTy)E(% v, z) (1)
H(z+ Ty, y+T,, 2) :e—i(kn,Tq:-l—kyTu)H(x’ v, 2). (2
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Fig. 2. Finite-element domain: periodic cell.

The scattered field can be expanded on Floquet’ s modes as
E :Ez + Z B:’nne—i(ama:—l—,ﬁny—l—'y;,nz)’

_ Z + —i(amztBny—L, %)
E - B’rnne !

m,n

z>0 (3)

z< —h 4

and their related wave vectors &,,,,, are determined by

2rm
m :ka:
“ T
B, =k, + 2 (5)
n — vy Ty
Vi =(kF 5 — ad, — p2)/? (6)

B,.... are the diffraction coefficients, i.e., the unknowns of our
problem. It isworth noting that, for alossless medium ©; » and
whenk? , > (a2,+/32), the (m, n) Floquet’s mode propagates
(Ysmn isred). Otherwise +,,,, is purely imaginary and one gets
an evanescent wave along ».

Inside the inhomogeneous area ©;,, the fields satisfy the
Bloch conditions (1) and (2). Let us note £2;, (respectively,
Y 2) the intersection of ©;, (respectively, ©; 2) with the
periodic domain 10, T3.[x]0, T,[xR. €, strictly includes all
the inhomogeneities. From a numerical point-of-view, we
can consider the unit cell €2;, as a rectangular pseudoguide
(Fig. 2) whose sides represent the quasi-periodic conditions for
the fields. The input and output modes are Floquet's waves.
Thus, we use a waveguide-oriented finite-element approach to
handle the periodic problem. Our analysis starts from an FEM
technique [8] whose accuracy has been proven for classical
waveguide studies.

Let S, (z =0), Sf(z =Tx), S, (y =0), S (y =Ty) be
the periodic boundaries of the FEM domain €2;,, and let S1(z =
0) S2(z = —h) beits upper and lower face. The solution E of
our problem is entirely determined by solving the equations of
propagation in 2,

V x [N_I(T)V x E(r)] — e(rWE(r) =0 (7
V- [e(r)E(r)] =0 (e, n may betensorial) (8)

with the quasi-periodic BC on tangential components

=e Meleu (E x )

(B x ) ©

@,y |S;y

. —ika,yTo. -
(V><E)><n|5:y =e (V><E)><n|s;y (10)

and the continuity of total magnetic and electric fields on S
and S5. On these last boundaries, we apply a modal-coupling
method, which means we are expanding the fields on Flo-
quet’s modes and enforcing the continuity of their tangential
components.

[11. MIXED FINITE-ELEMENT APPROACH

Our FEM software [9] is based on the H(curl) variational
formulation. H(curl; ) is the Sobolev space of summable
square vector functions in a bounded regular domain 2 and
whose curl sguare can aso be integrated. We use the P1
finite-element conforming in H(curl) built on tetrahedron, as
introduced by Nedelec [7]. The degrees of freedom are on
the edges (i.e., the computed unknown is the line integral of
the vector solution along the tetrahedron edge).

The harmonic Maxwell problem is solved in & where the
propagation equation (7) is discretized by nondivergence poly-
nomial basis functions. A weak formulation of (7) leads to the
following problem: find E in H(curl) so that, for all E’, we
have

/ [—wWe(E-E)+p (VxE) (VxE)]dv
)

—/ prE - [(Vx E)xalds=0 (11)
S
with S being the boundary of 2 and n being its outgoing unit
normal vector.

In this FEM, H(curl) is approximated by a finite N-di-
mensional vectorial space of P1 so that we can write an
approximation for

(12)

N
E= Z a;p;
i=1

where the first-order polynomial basis functions p, have the
“mixed-FEM” properties

/ pi-dlI(SiJ
T

7

(13)

withI'; being thetetrahedron edge and ¢;_ ; being the Kronecker
delta. a; isthelineintegral of £ aong I';. The discretized form
of (11) then becomes

-w?MX+ KX =@, WithMij:/epi-pjdv
Q

Kij = /Qﬂ_l (Vxp) (Vxp;)dv (14)

G, being the surface term of (11) coming from the sources
or Neumann BC or, more generally, from conditions linking
the value of the solution to its curl (impedance BC, absorbing
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BC, etc.). Thefactorization of the sparse matrix (—
is performed using a Crout algorithm [10].

WM+ K)

IV. MODAL-COUPLING METHOD

This technique handles the matching of Floquet’s modes on
the upper and lower boundary S; and Sy of the domain £2;,. In
order to beasolution of Maxwell’ segquationsin thewhole space,
tangential components of total magnetic and electric fields must
be continuous at these artificial boundaries. We expand the Flo-
quet’s modes (3) and (4) on the TE-TM basis where TE and
TM isreferred, respectively, to the electric- and magnetic-field
component normal to the plane of diffraction (2; k,,,,.). Thetan-
gential components of the electric field on .S; and .S, can be
expressed as

Z Emnp

m,n,p

—tRmnZ
Ly Y, 2 * { mnpe

+c,,mpe+mW} (15)

with the convention x,,,,, = Vmn-7 (7 = n.2), and p being the
projection TE (p = 1) or TM (p = 2). The scalar quantities

Chnp TEPresent the diffraction coefficientsin the TE-TM basis.
They are the unknowns of our problem. c;,,..., are the incident
data: zero on the lower boundary S> (ho incident wave) and
nonzero on Sy only for m = n = 0 (incident wave). On these
surfaces, the TE-TM basis has the form

e~ (Oma+029) (3, & + i)
(ToT)*Xmn
e,i(amw+,ﬁny) (Oém-';" + ﬁn@)
(TT)Y X mn

Eglnl (.7}, y) =

(16)

ESLTLQ (.7}, y) = (17)

With X = (a2, + 82)1/2.
The Floquet’s modes E; are characterized by the relation

+ Fik,z -~
[VX(Eje ’ )]ansl,z

= +v; (l’??e:':i'{”j;‘)ls1 . (18)

with v; = —iv; for TE modes and v; = w?ep/iy; for TM
modes. Therefore, we can write the continuity of tangential
components of the total magnetic field on .Sy and S, as

[(V x E) Z vy P2 ET (19)

|51 2
with

ij(l, 2) =, (c;!—efmjz _ c—e+mjz (20)

)|51,2'

Finally, we express the solution E of the periodic problemin
Q;, as

=31y + 3 v ) (21)

J J

where the fields 7" (respectively, T¢”)) are computed in &,
by solving, for each mode E,; considered on the boundary S
(respectively, S>), the FEM equation

V x [ufl(r)v X TJ(»I’Q)(T)} - 6(r)w2T§1’2)(r) =0 (22
with the modal BC on S; and S
(v x 1) xd,, , =8T (23)
(V x T§1’2)) xfy, =0 (24)
and the quasi-periodic BC on S, S, S, and S
(Tj X 'n,)|S+ = e*ika:, vTe,y (TJ X n)lsf (25)
(VxT;)xay_, =e e Tev(V x T7)) xay__ . (26)

The modal BCs are the standard Neumann BCs. The non-
trivial quasi-periodic BC will be introduced in Section V.

The sum (21) convergesto the solution of the problem that we
have formulated in Section I1. We obtain directly the magnetic
field in the cell by applying the curl on (21).

The 57 sumiis, in fact, truncated by choosing a finite number
M of Floguet’'s modes (al the propagating ones and the first
vanishing ones). We built the A/ x M linear {Y}; } system using
the continuity on the tangential components of the electric field
with (15), (20), and (21). This condition enables us to compute
the coefficients of the scattered field expansion, as well as re-
flection and transmission coefficients.

This method is numerically efficient. It is valid for al fre-
guencies, provided M is chosen large enough.

V. QuAsI-PeRIODIC BCs

We are looking for quasi-periodic solutions [see (9) and
(10)]. The FEM basis functions (13) should be modified in
order that they belong to the solution space (i.e., they must
be quasi-periodic). Only basis functions supported on quasi-
periodic boundaries will be concerned.

This method requires that the mesh trace is the same on
facing boundaries of the cell. Let us note {p;}r=1, n, iS
the family of basis functions related to the S boundary,
{p}i=~,+1,2~, are those corresponding to the facing S
boundary, and {p;};=2n,+1,~v ae al the other ones (the
methodology is the same for .S~ and Sj boundaries). If the
mesh is periodic then

pl("')ISJr = Pk(T)lsf- (27)
From (9) and (12), we must have
a; = e FeTeg, (28)

Hence, we built a new set of basisfunctions {®4}a=1, N n,

&, =p, +e *Tp, for i =[1, Na];

[=[N,+1, 2N,]
forj=[N,+1, N — N,

(29)
d; = Pi+nN,>
This new set gives the same properties (13).



LUBRANO AND OELHOFFEN: ENHANCED METHOD FOR DETERMINING ELECTROMAGNETIC PROPERTIES OF PERIODIC MATERIALS 395

Tx

metallic
coating (Ag)

Ty

Fig. 3. Honeycomb grid: insulator of permittivity e = 3¢, with the vertical
faces coated with silver paint of impedance 10 €2/sqg, surrounded by air. The
dimensionsare T, = 7,/v3,a = T,/3 (hexagonal edge), e = 0.017,
(insulator gap), and » = 0.57, (height).
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Fig. 4. Computed and measured transmission coefficient (modulus) of the
silver honeycomb grid studied. The frequency is normalized to the spatial
frequency £, given by thelargest period T, fo = ¢/T,, (diffraction threshold).
The incidence is normal (E¢/ /).

Integral (11) is aHermitian scalar product. The surface term
vanisheswith the {®,} basis. M and K matrices become Her-
mitian. The new formulation

EIZ ad‘I>d
d

enforces the computed electromagnetic field to be quasi-
periodic. This method is very easy to handle and leads to a
well-formulated FEM for quasi-periodic BCs.

(30)

VI. HOMOGENIZATION OF PERIODIC MATERIALS

We are interested in simulation of periodically organized
composite materials. When the periods are small enough
compared to the wavelength (i.e,, when the scattering can
be neglected), the electromagnetic properties of the material
can be characterized by an effective permeability n. and
permittivity ¢.. These values are directly obtained from the
computed reflection and transmission coefficients [4] that are
the measurable quantities. To ensure the homogenization, .
and ¢, must satisfy a nondependence with the thickness.

The accuracy of the computation of the reflection and
transmission coefficients has been proven for several types
of frequency-selective surfaces [11]. For a silver honeycomb
grid (Fig. 3), we show our results relative to measurements
(Fig. 4). The transmission coefficient spectrum is presented
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Fig. 5. Effective relative permittivity. €. = (€, — i€”’).
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Fig. 6. Effectiverelative permeability. i. = (i, — inl).

for normal incidence. Measurements have been performed on
lens-focusing facility [12].

The effective permittivity extracted from the complex trans-
mission and reflection coefficients shows a resonant feature
(Fig. 5) usually observed for frequency-selective surfaces.
Although the material has no magnetic part, the effective
permesbility (Fig. 6) varies substantialy. /. is decreasing,
while /i becomes resonant. /i, keeps its modulus lower than
one. This behavior is related to the skin effect [13]. It is shown
that composite materials made of hollow conducting inclusions
may exhibit permeability levels significantly different from
unity, even for nonmagnetic metal volume fractions lower than
1% [14].

VI1l. CONCLUSION

The propagation and diffraction characteristics of any peri-
odic heterostructure can be described rigorously by the present
FEM. The scalar coefficients of Floguet’s modes and the elec-
tromagnetic field in the FEM domain are computed with good
accuracy when we consider thefirst vanishing modesin the cal-
culations. The effective permittivity and permeability of com-
posite materials arethen directly derived from the reflection and
transmission coefficients.

This method is quite appropriate for the study and design of
organized composite dielectrics. Besides, the limit of the ho-
mogeni zation hypothesis can be determined using this software,
which isvalid for the scattering regime.
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